

High Performance Software Defined Radio

Open Source (GNU type) Hardware and Software Project Project Description: <u>http://hpsdr.org</u>

Hardware Project #1

ATLAS Board

Assembly Guide and Documentation

Board Design

Philip Covington, N8VB

Text Christopher T.Day, AE6VK Philip Covington, N8VB Horst Gruchow, DL6KBF Ray Anderson, WB6TPU Graphics and Layout Horst Gruchow, DL6KBF

Project Coordinator

Eric Ellison, AA4SW

© 2006 DL6KBF

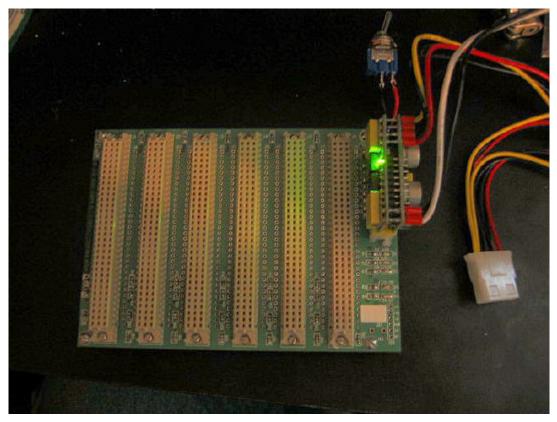
Contents

Where to find everything

Contents Where to find everything 2	
ATLAS - the Backplane About the ATLAS Module 3	
ATLAS - the Bus ATLAS Bus Physical Description 4 Standard Connectors: 5 Optional Connectors: 5 Misc. Features: 5 Notes 6 DIN41612 Bus Pinout 7 ATLAS Bus Board Connections XBUS ATLAS Bus Board Connections YBUS Notes and Glossary 10 ATLAS - the Construction How to get the ATLAS printed circuit board 11 Bill of materials (BOM) 11 US BOM 12 EU BOM 12 ATLAS Board Construction 13 Tools 13	8 9
Quick Installation13Construction Notes14	
ATLAS - the Mechanics Plug-in Card Dimensions 16 Some ATLAS Board Pictures 17	
ATLAS - the Performance Ray Anderson, WB6TPU, on ATLAS performance ATLAS TDR and VNA Plots	19 20
ATLAS - the Information Useful Information and Links 22	
Revision History 23	

ATLAS - the Backplane

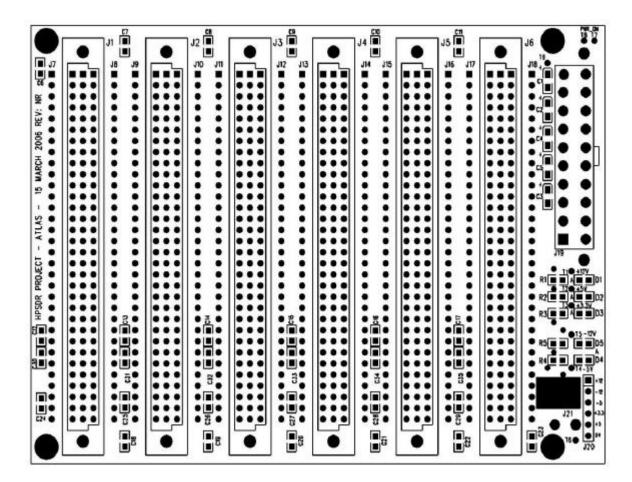
About the ATLAS Module


The ATLAS is a passive backplane that all other modules plug into. The circuit board has provision for up to six DIN41612 connectors at 0.8 inch spacing. An ATX 20 pin power connector is fitted to the board so that 12v, 5v, 3.3v etc. supplies from a standard PC power supply can be used to power the HPSDR. Since such power supplies are in plentiful supply, both new and surplus, this neatly solves the power supply requirements.

The various files for the ATLAS board can be found at

http://www.philcovington.com/HPSDR/ATLAS/ .

The DIN connector spacing and board size have been chosen such that the backplane can be fitted into a standard PC enclosure.


The project leader for ATLAS is Phil, N8VB.

Assembled ATLAS with a PicoPSU ATX power supply plugged in (photo Christopher T. Day, AE6VK)

ATLAS - the Bus

ATLAS Bus Physical Description

Board:	4 Layer , 5.500" X 3.940"(139.7x100 mm ²)
	J1-J6 slots spaced at 0.800"(20.3 mm)

Stackup:

Ground Plane (Top Layer)	
YBUS	
Power Planes	
XBUS (Bottom Layer)	

Power:

+12VDC, -12VDC, +5VDC, -5VDC, +3.3VDC

ATLAS Bus Physical Description

Standard Connectors:

96 pin DIN41612 (J1-J6) - BUS
20 pin ATX PS (J19) - POWER
PS LOAD (J21) - LOAD
6 pin 0.100 SIP (J20) - POWER
T1-T6 for external LEDs
T7-T8 for remote ATX power on switch
T9 for ATX_PWR_OK

Optional Connectors:

64 pin DIN41612 (using XBUS only)
32x2 0.100"(2.54 mm) Header (using XBUS only)

Misc. Features:

Each pin of the slot connectors can be isolated from the bus and then jumpered to another bus pin or signal.
J7-J18 are provided for optional 32 pin SIP headers or wire-wrap pins. This allows re-routing the bus as needed.
The user can decide to use the XBUS only by populating J1-J6 with DIN41612 64 pin "Type B" connectors or 32 pin dual 0.100 headers.
J21 allows for an optional load resistor to be placed on the +5V bus when using an ATX power supply. The load resistor should be mounted to a proper heatsink.
D1-D5 are SMT LEDs connected to the power bus (+12V, -12V, +5V, -5V, +3.3V) through dropping resistors R1-R5.
T1-T6 allow panel mounting of LEDs instead of SMT.
All supplies bypassed.

ATLAS Bus Physical Description

Notes:

- 1. The buses are separated into the XBUS and YBUS, with 24 lines each.
- 2. The XBUS is routed on the bottom layer of the PCB.
- 3. The YBUS is routed between the top ground plane layer and the power plane layer.
- 4. The XBUS is divided into the subgroups XA0-XA7, XB0-XB7, XC0-XC7, XDC.
- 5. The YBUS is divided into the subgroups YA0-YA7, YB0-YB7, YC0-YC7, YDC.
- 6. XDC and YDC are daisy chained between slots (see schematic).
- 7. The XBUS and YBUS subgroup divisions are for physical naming purposes only.
- 8. Since the YBUS is sandwiched in between two plane layers, it should be used to route medium speed signals or clocks between boards. While not intended to be a LVDS bus, it should be adequate for clock speeds up to 20-25 MHz.
- J7, J9, J11, J13, J15, J17 are connected to the XBUS. J8, J10, J12, J14, J16, J18 are connected to the YBUS. On the bottom side of the Atlas board, J7-J18 are then connected by traces to J1-J6. This allows you to isolate pins on the J1-J6 connectors by cutting the connecting trace. See 10 below.
- 10. If an application requires re-routing signals on the bus, a possible solution is to populate the related pin on connectors J7-J18 with wire wrap pins. The signal then can be routed on top of the Atlas board with wire wrap wire. Since the top of the board is ground plane, the wire wrap wire should lay directly on the board surface to minimize crosstalk/noise.
- 11. An alternative to wire wrap is to place jumper wires between the rerouted bus signals on the J7-J18 pads.
- 12. See physical bus pinout below.

ATLAS Bus Physical Description

DIN41612 Bus Pinout

	XI	BUS			YBUS		
<u>PIN</u>	<u>NAME</u>	ALTERNATE	<u>PIN</u>	NAME	PIN NAME ALTERNATE		
A1	+12VD C		B1	+12VDC	C1	+12VDC	
A2	X0A0		B2	GND	C2	Y0A0	
A3	X1A1		B3	GND	C3	Y1A1	
A4	X2A2		B4	GND	C4	Y2A2	
A5	X3A3		B5	GND	C5	Y3A3	
A6	X4A4		B6	GND	C6	Y4A4	
A7	X5A5		B7	GND	C7	Y5A5	
<mark>A8</mark>	X6A6		B8	GND	C8	Y6A6	
A9	X7A7		B9	GND	C9	Y7A7	
A10	X8B0		B10	GND	C10	Y8B0	
A11	X9B1		B11	GND	C11	Y9B1	
A12	X10B2		B12	GND	C12	Y10B2	
A13	X11B3		B13	GND	C13	Y11B3	
A14	X12B4		B14	GND	C14	Y12B4	
A15	X13B5		B15	GND	C15	Y13B5	
A16	X14B6		B16	GND	C16	Y14B6	
A17	X15B7		B17	GND	C17	Y15B7	
A18	X16C0	1-WIRE	B18	GND	C18	Y16C0	SPI - nCS4
A19	X17C1	nRST	B19	GND	C19	Y17C1	SPI - nCS3
A20	X18C2	I2C - SCL	B20	GND	C20	Y18C2	SPI - nCS2
A21	X19C3	I2C - SDA	B21	GND	C21	Y19C3	SPI - nCS1
A22	X20C4	JTAG - TRST	B22	GND	C22	Y20C4	SPI - nCS0
A23	X21C5	JTAG - TMS	B23	GND	C23	Y21C5	SPI - SCK
A24	X22C6	JTAG - TCK	B24	GND	C24	Y22C6	SPI - MISO
A25	X23C7	JTAG - SDO ret	B25	GND	C25	Y23C7	SPI - MOSI
A26	-12VDC		B26	-12VDC	C26	-12VDC	
A27	X24DC	JTAG - SDO	B27	GND	C27	Y24DC	SPI - MOSI ovfl out
A28	-5VDC		B28	-5VDC	C28	-5VDC	
A29	X25DC	JTAG - SDI	B29	GND	C29	Y25DC	SPI - MOSI ovfl in
A30	+3.3VDC		B30	+3.3VDC	C30	+3.3VDC	
A31	X26DC		B31	GND	C31	Y26DC	
A32	+5VDC		B32	+5VDC	C32	+5VDC	

ATLAS Bus Board Connections - XBUS

XBUS					
<u>PIN</u>	NAME	JANUS U11	<u>OZY U3</u>	ALTERNATE	
A1	+12VDC				
A2	X0A0	PIN 97 IO	PIN 147 IO		
A3	X1A1	PIN 95 IO	PIN 146 IO		
A4	X2A2	PIN 91 IO	PIN 145 IO		
A5	X3A3	PIN 89 IO	PIN 144 IO		
A6	X4A4	PIN 87 IO	PIN 143 IO		
A7	X5A5	PIN 85 IO	PIN 142 IO		
A8	X6A6	PIN 83 IO	PIN 141 IO		
A9	X7A7	PIN 81 IO	PIN 139 IO		
A10	X8B0	PIN 77 IO	PIN 138 IO		
A11	X9B1	PIN 75 IO	PIN 137 IO		
A12	X10B2	PIN 73 IO	PIN 135 IO		
A13	X11B3	PIN 71 IO	PIN 134 IO		
A14	X12B4	PIN 69 IO	PIN 133 IO		
A15	X13B5	PIN 67 IO	PIN 128 IO		
A16	X14B6	PIN 64 IO/GCLK3	PIN 127 IO		
A17	X15B7	PIN 61 IO	PIN 120 IO		
A18	X16C0	PIN 57 IO / U14 ID	PIN 119 IO	1-WIRE	
A19	X17C1	PIN 55 IO	PIN 118 IO	nRST (1)	
A20	X18C2	PIN 53 I2CSCK	PIN 117 IO	I2C - SCL	
A21	X19C3	PIN 51 I2CSDA	PIN 116 IO	I2C - SDA	
A22	X20C4	PIN 49 IO	PIN 115 IO	JTAG - TRST	
A23	X21C5	PIN 22 CTMS	PIN 114 IO	JTAG - TMS	
A24	X22C6	PIN 24 CTCK	PIN 113 IO	JTAG - TCK	
A25	X23C7	JP 10 SDOBACK	PIN 112 IO	JTAG - SDO ret	
A26	-12VDC				
A27	X24DC	PIN 25 CTDO	PIN 110 IO	JTAG - SDO	
A28	-5VDC				
A29	X25DC	PIN 23 CTDI	PIN 106 IO	JTAG - SDI	
A30	+3.3VDC				
A31	X26DC	PIN 40 IO	PIN 105 IO		
A32	+5VDC				

ATLAS Bus Board Connections - YBUS

		YBUS					
PIN	PIN NAME JANUS U11 OZY U3 ALTERNATE						
C1	+12VDC						
C2	Y0A0	PIN 98 IO	PIN 149 IO				
С3	Y1A1	PIN 96 IO	PIN 150 IO				
C4	Y2A2	PIN 92 IO	PIN 151 IO				
C5	Y3A3	PIN 90 IO	PIN 152 IO				
C6	Y4A4	PIN 88 IO	PIN 160 IO				
C7	Y5A5	PIN 86 IO	PIN 161 IO				
C8	Y6A6	PIN 84 IO	PIN 162 IO				
<u> </u>	Y7A7	PIN 82 IO	PIN 163 IO				
C10	Y8B0	PIN 78 IO	PIN 164 IO				
C11	Y9B1	PIN 76 IO	PIN 165 IO				
C12	Y10B2	PIN 74 IO	PIN 168 IO				
C12	Y11B3	PIN 72 IO	PIN 169 IO				
C13	Y12B4	PIN 72 IO PIN 70 IO	PIN 109 10				
C15	Y13B5	PIN 68 IO	PIN 171 IO				
C16	Y14B6	PIN 66 IO	PIN 173 IO				
C17	Y15B7	PIN 62 IO/GCLK2	PIN 175 IO				
C18	Y16C0	PIN 58 IO	PIN 176 IO	SPI - nCS4			
C19	Y17C1	PIN 56 IO	PIN 179 IO	SPI - nCS3			
C20	Y18C2	PIN 54 IO	PIN 180 IO	SPI - nCS2			
C21	Y19C3	PIN 52 IO	PIN 181 IO	SPI - nCS1			
C22	Y20C4	PIN 50 IO	PIN 182 IO	SPI - nCS0			
C23	Y21C5	PIN 48 IO	PIN 185 IO	SPI - SCK			
C24	Y22C6	PIN 44 IO/DEV_CLRn	PIN 187 IO	SPI - MISO			
C25	Y23C7	PIN 43 IO/DEV_OE	PIN 188 IO	SPI - MOSI			
C26	-12VDC						
C27	Y24DC	PIN 42 IO	PIN 189 IO	SPI - MOSI ovf out			
C28	-5VDC						
C29	Y25DC	PIN 41 IO	PIN 191 IO	SPI - MOSI ovf in			
C30	+3.3VDC						
C31	Y26DC	PIN 39 IO	PIN 192 IO				
C32	+5VDC						

Notes and Glossary

TERM	Explanation	
JANUS U11	Altera EPM240TQFP100 CPLD on JANUS Board	
OZY U3	Altera EP2C5-208 FPGA on OZY Board	
CPLD	Complex Logical Programmable Device	
FPGA	Field Programmable Gate Array	
1-WIRE	Board Identification (using MAXIM DS2431P with 64-bit ROM reg- istration no. + 1024bit EEPROM) DALLAS 1-Wire Protocol	
nRST	RESET	
I2CSCK / I2C-SLC	Inter-Integrated Circuit (I ² C Bus) - Master Clock Line	
I2CSDA	I ² C Bus - Serial Data Line	
JTAG	Joint Test Action Group - Implementation of IEEE 1149.1 Stan- dard Test Access Port and Boundary-Scan Architecture Programming Port for Altera Devices	
JTAG-TRST	Test Reset	
JTAG-TMS	Test Mode Select	
JTAG-TCK	Test Clock	
JTAG-SDO	Test Data Out	
JTAG-SDOret	Test Data Out Return - Jumper JP12 on JANUS to be set if JANUS U11 programmed via OZY USB - J12 open for local JTAG program-	
JTAG-SDI	Test Data In	
GCLK2 /GCLK3	Clocks connected to Global Clock Network on JANUS U11	
SPI-nCS4 to CS0	Serial Peripheral Interface - Chip(Slave) Select	
SPI-SCK	SPI - Master Clock	
SPI-MISO	SPI - Master In Slave Out Data / Serial Data In	
SPI-MOSI	SPI - Master Out Slave In Data / Serial Data Out	
SPI-MOSI ovfl out	SPI - Data Overflow Master	
SPI-MOSI ovfl in	SPI - Data Overflow Slave	
DEV_CLRn	Clear all Registers on Low - JANUS U11	
DEV_OE	All I/O pins tristate on Low - JANUS U11	

ATLAS - the Construction

How to get the ATLAS printed circuit board

Status as of June 2006

A batch of 400 beta boards has been produced by Eric Ellison, AA4SW, after the initial order count had gone up over the 300 mark. There still might be some boards available of this first run. Cost at this time will be 10 US\$ plus shipping. Please check the website http://www.hamsdr.com .

If not yet done you will have to register in order to be able to view the **Projects** tab where the currrent board ordering status of the **HPSDR** project is listed. So just click on **Log-In/Join** at the upper right, select **Join** from the menu and provide the appropriate information on the form, click on the **Save** button at the bottom of the form and you are all done. The website is secure and spam-free and you will have access to a wealth of information about Software Defined Radio.

You can always make your own board because the PCB files are Open Source and are available at <u>http://www.philcovington.com/HPSDR/ATLAS/</u> in Gerber format.

Please also check <u>HPSDR mailing list</u> <u>HpsdrWiki:Community Portal</u> for information regarding the current standing of the HPSDR project.

Effective as of June 7, 2006, the TAPR organization (TUCSON AMATEUR PACKET RADIO CORPORATION) has gone into cooperation with the HPSDR group and will distribute HPSDR boards and kits. The first available kit is a parts kit for ATLAS.

Please visit http://www.tapr.org/kits_atlas.html

Bill of materials (BOM)

As test orders have shown the parts for the ATLAS board should be readily available at good eletronics parts stores. The board uses standard SMT parts, mainly of the type 0805.

Special care should be taken to get the 5 tantalum capacitors C1 to C5 right. The only ones which will fit on the board are of the type 3216 or 3528 (A, B or S, T for low profile).

The Molex ATX header might present a little problem as well because it is not stocked everywhere as experience shows. Most probably a posting to the <u>HPSDR mailing list</u> will help.

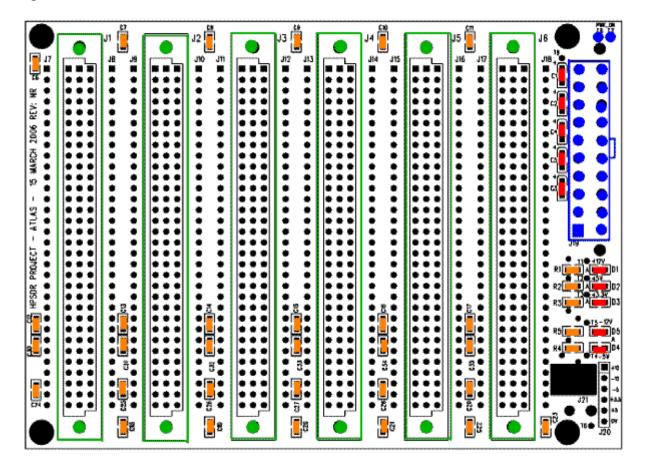
The following tables represent two different parts sources. The US BOM uses part nos. and part designations from <u>MOUSER ELECTRONICS</u>. The EU BOM has been compiled from a german supplier <u>SEGOR-electronics</u> who ships europewide and accepts PayPal. They usually have all items in stock.

US BOM

Position	MOUSER Part No.	Description	Units	Price/Unit	Total
J1-J6	571-5350905	AMP Eurocard Connectors Type C Receptacle 96 Position	6	\$ 3.360	\$ 20.16
J19	538-39-29-9202	Molex Mini-Fit Jr. Connectors 20 CKT VERT HEADER	1	\$ 2.570	\$ 2.57
C6-C35	80-C0805C104Z5V	Kemet 0805 SMD Ceramic Chip Capacitors 0.1uF 50V Y5V	30	\$ 0.070	\$ 2.10
D1-D5	859-LTST-C171GKT	Lite-On SMT LED 0805 Green, Clear 569nm	5	\$ 0.130	\$ 0.65
R3	260-1.0K-RC	Xicon 0805 SMD Chip Resistors 1/10WATT 1KOHMS 5%	1	\$ 0.080	\$ 0.08
R2, R4	260-1.8K-RC	Xicon 0805 SMD Chip Resistors 1/10WATT 1.8KOHMS	2	\$ 0.080	\$ 0.16
R1, R5	260-3.3K-RC	Xicon 0805 SMD Chip Resistors 1/10WATT 3.3KOHMS	2	\$ 0.080	\$ 0.16
C1-C5	74-293D106X9016A2TE3	Vishay/Sprague Solid Tanta- lum SMD Capacitors 10uF 16volts 10% A case	5	\$ 0.300	\$ 1.50

EU BOM

Position	SEGOR Part No.	Description	Units	Price/Unit	Total
J1-J6	VG96F-ABC	VG-Buchse 96pol ABC	6	€ 2.00	€ 12.00
J19	MFJR20M-PR/Molex	20p.Stiftwanne 180'Print	1	€ 2.00	€ 2.00
C6-C35	u10-0805-X7R	100nF 63V X7R 10% 0805	30	€ 0.075	€ 2.25
D1-D5	LED 0805 gn-LC	SMD-LED grün 565nm 0805	5	€ 0.15	€ 0.75
R3	1k0-0805-5%	1,0k Ohm 5% SMD 0805 min. order 10	10	€ 0.038	€ 0.38
R2, R4	1k8-0805-5%	1,8k Ohm 5% SMD 0805 min. order 10	10	€ 0.038	€ 0.38
R1, R5	3k3-0805-1% !	3.3k Ohm1% SMD 0805 min. order 10	10	€ 0.038	€ 0.38
C1-C5	TA10u-16A SMD	10uF-16V Tantal SMD A3216	5	€ 0.20	€ 1.00


ATLAS Board Construction

Tools

As the components and pads are quite small, use a small soldering iron and small diameter solder. I used a 15W iron and 0.015 diameter (metric max. 0.5 mm) RadioShack Silver-Bearing Solder.

Some kind of magnifying glass is also helpful for soldering and checking. Use a good light source. If you are not too familiar with SMD soldering have a look at http://www.amgrp.org/kits/micro908/smt_construction.pdf

Quick Installation

Step 1: Install orange parts first.

- Step 2: Install red parts next. Observe polarity!
- Step 3: Install green parts.
- **Step 4: Install blue parts.**

Construction Notes

1) Start by installing the 0.1uF ceramic bypass capacitors, C6 through C36. Tack one end of each capacitor to its pad; you should not need any more solder than is already on the pad to hold the capacitor in place. Then solder the other end of the capacitor to its pad with a small amount of additional solder. Finally, go back and fully solder the tacked end of the capacitor by adding a small amount of solder.

2) Install the 1K resistor R3 with the same technique.

3) Install the 1.8K resistors R2 and R4.

4) Install the 3.3K resistors R1 and R5.

5) Using a similar tack-and-solder technique, install the 10uF tantalum capacitors C1 through C5. Be careful to observe the polarity of the tantalum capacitors - the marked end of the capacitor goes on the pad with the silk-screened "+" sign nearest to it. Do not linger with the soldering iron to avoid damaging the components.

6) Install LEDs D1 through D5. These are polarized and must be installed the right way around. The LED's cathodes are marked with a very small colored dot on the side of the lens nearer to one end. This end goes on the pad _away_ from the voltage marking, i.e., on the right-hand pad for the "+" voltages and the left-hand pad for the "-" voltages, looking at the board with the LED markings right-side up.

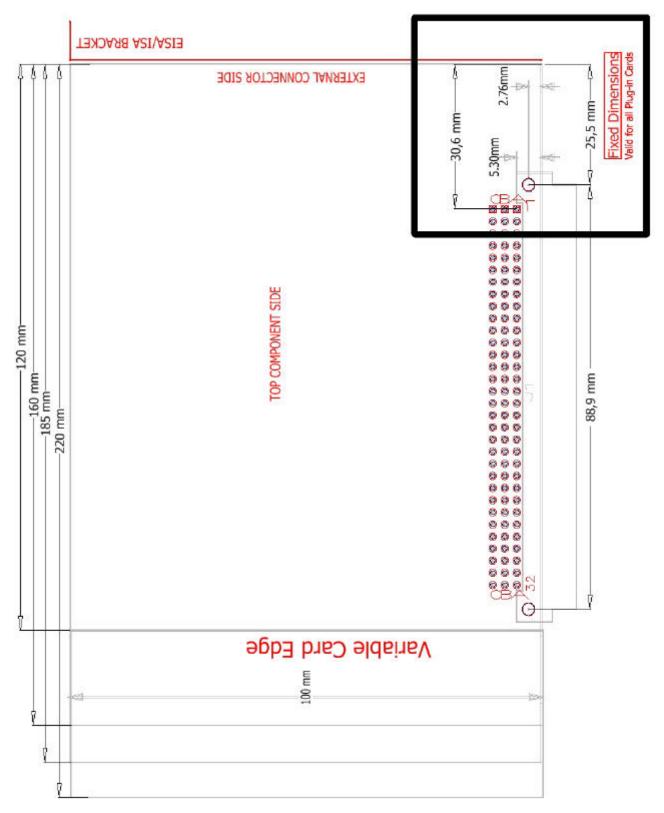
7) Check for short circuits. At least check that there are no shorts between any pair of pads at J20. If any are found, check all components for shorts or any other problems. You will not be able to easily access many of the components once the connectors are in place.

8) Install DIN 41612 connector J1. To keep the connector flush with the circuit board, use two 2-56 x 1/4" machine screws and hex nuts to at least temporarily fasten the connector to the board. Tighten the screws only enough to snug the connector evenly up against the circuit board. (Optionally, when you get to soldering the pins, be sure to hold the board firmly against the connector and the connector against a smooth tabletop.) Carefully check that the ears at the ends of the connector is to the right. The DIN connectors will fit into the holes either way, but getting the connectors in wrong will mean the daughter boards will be upside down. Make certain you have this right before soldering any pins as it will be impossible to change later. Once the orientation is correct, at two diagaonally opposite corners of the connector is flush against the board and correct the situation if needed. Then solder the remaining pins. It should take no more that about 2-3 seconds of contact between the pin and the pad to apply the solder. When all pins are soldered in place, check the whole connector carefully for solder bridges or missed pins.

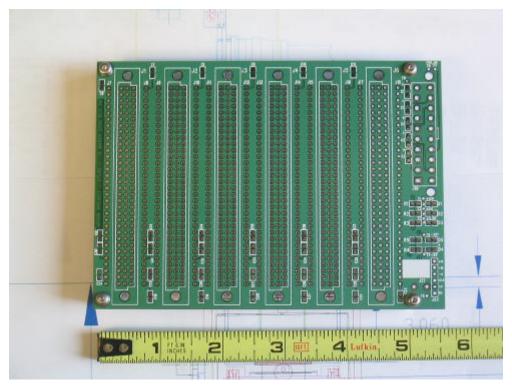
9) Install DIN 41612 connectors J2 through J6 in the same way.

10) Snap the ATX 20-pin connector J19 into place and solder the pins to the pads on the bottom side of the board.

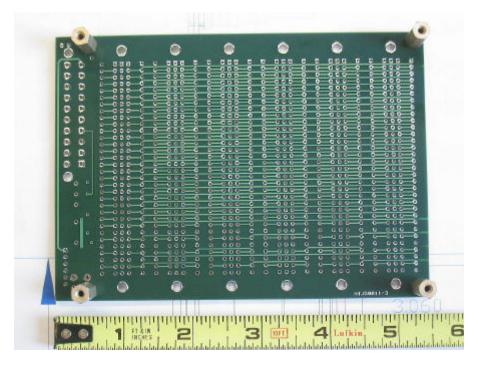
11) Install wires to an external SPST switch at T7 and T8. If you are not using a switch, then T7 and T8 must be jumpered together for the ATX power supply to turn on.

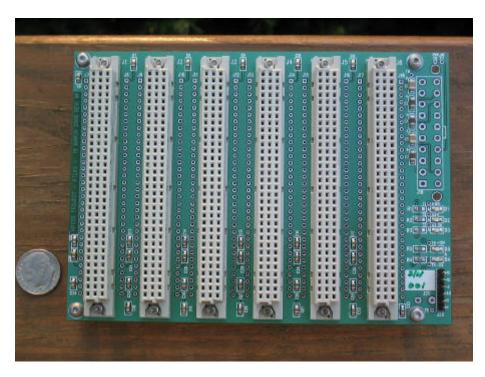

12) Make one last check of each connector for solder bridges or missed pins. Make one last check for shorts at J20.

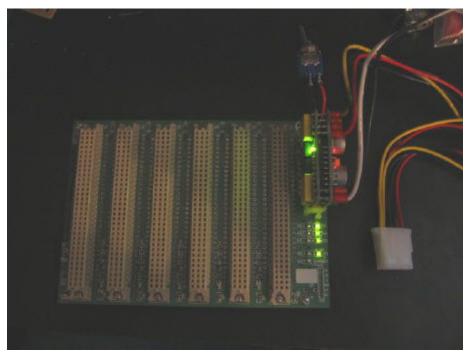
If all is well, you should have a completed ATLAS board.


Congratulations!

ATLAS - the Mechanics


Plug-in Card Dimensions


Some ATLAS Board Pictures


Bare board top side (photo Phil Covington, N8VB; scale shows Inches)

Bare board bottom side (photo Phil Covington, N8VB; scale shows Inches)

Assembled board with serial no. 001 (photo Phil Covington, N8VB) Please note that the ATX connector is not in place yet

First light (photo Christopher T. Day, AE6VK)

ATLAS - the Performance

Ray Anderson, WB6TPU, on ATLAS performance

...I did manage to go hide out in the lab for an

hour or so and do some VNA and TDR tests on the ATLAS board. No problems detected. Everything looked about how I was expecting it to look except my earlier impedance predictions by way of field solver were off a bit from the measured impedance values apparently due to some wrong assumptions that were made in setting up the extractor problem. I plan on posting some plots to the web site later today or tomorrow, however here is the bottom line:

I performed TDR and VNA measurements on all [0:24] *lines in both the X and Y bus. All bus lines in each bus looked similar.*

TDR Measurements: X bus: Measured impedance : 40 ohms average (predicted 78.5)

Y bus

Measured impedance : 46.2 ohms average (predicted 58)

The above measured impedances should be just fine for most applications and probably workable for LVDS signal if the need should arise.

VNA Measurements: X bus:

Measured from DIN connector 1 to 6 Ripple 6 dB p-p from DC to 1.5 GHz

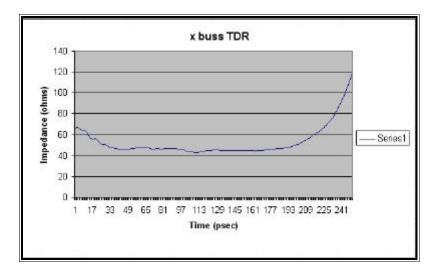
Major Resonances begin occurring at 1.5 GHz (-50dB @ 2.1 GHz)

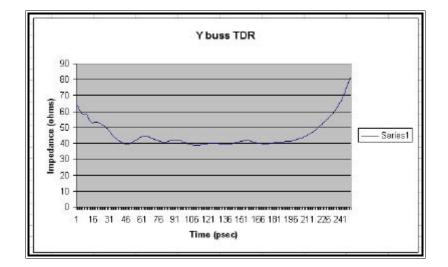
Y bus:

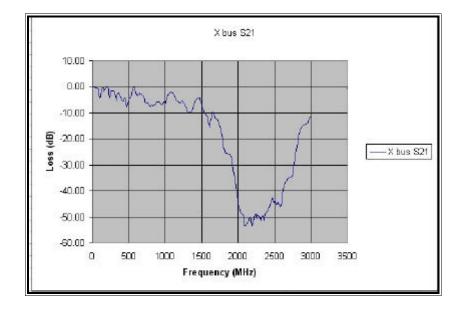
Measured from DIN connector 1 to 6 Monotonic rolloff down to about -8db DC to 1GHz Ripple 6dB p-p 1GHz to 1.5 GHz

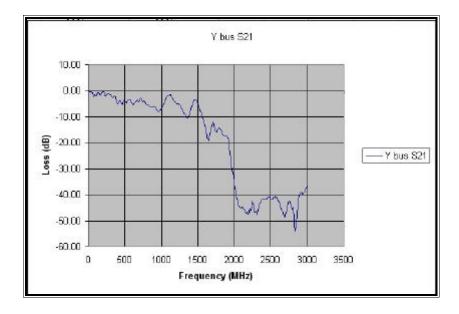
Major Resonances begin occurring at 1.5 GHz (-47dB at 2.1 GHz)

73, Ray WB6TPU


...′


ATLAS TDR and VNA Plots


TDR (Time Domain Reflectometry) measurements were made with a Tektronix TDS8000B Digital Sampling Scope and a 80E04 Sampling Head (20 psec rise-time)


VNA (Vector Network Analyzer) measurements were made with an Agilent N5230A VNA

Measurements were made on all bus signal nets [0:24] . these plots represent a typical measurement. (They all appear about the same)

ATLAS - the Information

Useful Information and Links

Project Description and Information

http://hpsdr.org http://hpsdr.org/wiki/index.php?title=HpsdrWiki:Community_Portal http://www.hamsdr.com (requires registration for full information access) http://www.philcovington.com

Discussion List / Reflector

The HPSDR Discussion List (also known as a "reflector") is the major method of intercommunication between all interested persons of this project. At times the number of messages can get large -- other times it may go a day or two without a message. Anyone can view the message traffic in the list archive online. It can be found at http://lists.hpsdr.org/pipermail/hpsdr-hpsdr.org/

Parts Kits and Boards

The TAPR Corporation is distributing parts kits as well as printed circuit boards for the HPSDR project.

TAPR Corporation http://www.tapr.org

ATLAS parts kit <u>http://www.tapr.org/kits_atlas.html</u>

Revision History

Revision	Date	Changes	Initiator
1.4	June 10, 2006	Page 11 modified Page 22 modified	DL6KBF
1.3	June 4, 2006	Page 11 modified: How to get the ATLAS printed cir- cuit board	DL6KBF
1.2	May 29, 2006	Pages 8, 9, 10 added: Bus signal description Page 16 added: Plug-in Card Dimensions	DL6KBF
1.1	May 05, 2006	Page 7: Pinout table updated	N8VB
		Page 19 added: Revision History	DL6KBF
1.0	April 30, 2006	Initial publication	DL6KBF